Simultaneous genotype calling and haplotype phasing improves genotype accuracy and reduces false-positive associations for genome-wide association studies.

نویسندگان

  • Brian L Browning
  • Zhaoxia Yu
چکیده

We present a novel method for simultaneous genotype calling and haplotype-phase inference. Our method employs the computationally efficient BEAGLE haplotype-frequency model, which can be applied to large-scale studies with millions of markers and thousands of samples. We compare genotype calls made with our method to genotype calls made with the BIRDSEED, CHIAMO, GenCall, and ILLUMINUS genotype-calling methods, using genotype data from the Illumina 550K and Affymetrix 500K arrays. We show that our method has higher genotype-call accuracy and yields fewer uncalled genotypes than competing methods. We perform single-marker analysis of data from the Wellcome Trust Case Control Consortium bipolar disorder and type 2 diabetes studies. For bipolar disorder, the genotype calls in the original study yield 25 markers with apparent false-positive association with bipolar disorder at a p < 10(-7) significance level, whereas genotype calls made with our method yield no associated markers at this significance threshold. Conversely, for markers with replicated association with type 2 diabetes, there is good concordance between genotype calls used in the original study and calls made by our method. Results from single-marker and haplotypic analysis of our method's genotype calls for the bipolar disorder study indicate that our method is highly effective at eliminating genotyping artifacts that cause false-positive associations in genome-wide association studies. Our new genotype-calling methods are implemented in the BEAGLE and BEAGLECALL software packages.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Joint haplotype phasing and genotype calling of multiple individuals using haplotype informative reads

MOTIVATION Hidden Markov model, based on Li and Stephens model that takes into account chromosome sharing of multiple individuals, results in mainstream haplotype phasing algorithms for genotyping arrays and next-generation sequencing (NGS) data. However, existing methods based on this model assume that the allele count data are independently observed at individual sites and do not consider hap...

متن کامل

Complete Genome Phasing of Family Quartet by Combination of Genetic, Physical and Population-Based Phasing Analysis

Phased genome maps are important to understand genetic and epigenetic regulation and disease mechanisms, particularly parental imprinting defects. Phasing is also critical to assess the functional consequences of genetic variants, and to allow precise definition of haplotype blocks which is useful to understand gene-flow and genotype-phenotype association at the population level. Transmission p...

متن کامل

A dynamic Bayesian Markov model for phasing and characterizing haplotypes in next-generation sequencing

MOTIVATION Next-generation sequencing (NGS) technologies have enabled whole-genome discovery and analysis of genetic variants in many species of interest. Individuals are often sequenced at low coverage for detecting novel variants, phasing haplotypes and inferring population structures. Although several tools have been developed for SNP and genotype calling in NGS data, haplotype phasing is of...

متن کامل

Genotype calling and phasing using next-generation sequencing reads and a haplotype scaffold

MOTIVATION Given the current costs of next-generation sequencing, large studies carry out low-coverage sequencing followed by application of methods that leverage linkage disequilibrium to infer genotypes. We propose a novel method that assumes study samples are sequenced at low coverage and genotyped on a genome-wide microarray, as in the 1000 Genomes Project (1KGP). We assume polymorphic site...

متن کامل

Genotype calling and haplotyping in parent-offspring trios.

Emerging sequencing technologies allow common and rare variants to be systematically assayed across the human genome in many individuals. In order to improve variant detection and genotype calling, raw sequence data are typically examined across many individuals. Here, we describe a method for genotype calling in settings where sequence data are available for unrelated individuals and parent-of...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • American journal of human genetics

دوره 85 6  شماره 

صفحات  -

تاریخ انتشار 2009